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I work in systems security. My research is on rigorous security analysis in (ML) systems. My approach
is to design algorithmic tools with provable guarantees for security analyses and defenses, and show their
utility in addressing practical concerns in ML security.

ML security is a new sub-area in security. It is bringing out many concerns with commercially deployed
ML systems. But which of these concerns are actual vulnerabilities, as opposed to just expected outcomes
of generalizing from samples to unknown distributions? Could ML creators prove that they have trained
with a particular dataset and that their models are not violating certain desirable properties?

My research tackles these questions from first principles. I work on foundational aspects of rigorous
security: precise definitions of the security vulnerabilities, frameworks of reasoning about the workings of
the system, and sound procedures to verify security, or the lack thereof.

• Security Vulnerabilities [1]: We formulate the first precise security definitions
for solving intellectual property disputes over training data. Under these precise
definitions, our main result is that the de-facto training process in ML, called
stochastic gradient descent (SGD), is collision-resistant under mild checkable
conditions. We provide a sound procedure to check these conditions for large
models with millions of parameters. We show empirically why relaxed security
definitions are insufficient and lead to contradicting conclusions [1].

Measurements

Procedures

Abstractions

Definitions

• Abstractions [2, 3]: We develop the first causal models for stochastic gradient descent. Our causal
models uncover a new connection: the bias and variance components of generalization also separately af-
fect memorization [2]. This explains why even when larger models generalize better, they also memorize
more. Causal models are also useful in explaining satisfiability procedures, i.e., SAT solvers, on particular
benchmarks, and drawing insights into solving heuristics and distributions of input formulae [3].

• Sound procedures [4, 5, 6, 7]: We give the first sound procedures that analyze security properties
with probably approximately correct (PAC)-style guarantees in neural networks. We instantiate these
procedures for adversarial robustness, fairness, and susceptibility to training data poisoning [5, 4]. I also
worked on provable defenses, using differentially-private training for graph learning [6, 7].

Broader Research Interests [8, 9, 10]. Beyond my thesis research, I enjoy working on problems that
are both algorithmic and practical. I worked on program synthesis with generalization guarantees [8], which
is within the larger scope of algorithms with provable guarantees. I also worked on the learnability of rules
for cross-language code transpilation [9], and inferring data flow rules for taint analysis of binaries [10].

Thrust I. Rigorous Security Analysis for Machine Learning Systems

Security is foremost about defining vulnerabilities under a threat model. Security of ML systems, i.e.,
systems that incorporate an ML model, is a new area with a deluge of concerns. For instance, we are
currently witnessing several class-action lawsuits for copyright infringement that have been filed by artists
against ML creators [15, 20]. When taken to court, what is the right procedure to decide if the ML creator
used the copyrighted data samples, beyond reasonable doubt? If ML creators train models with private data,
is it possible for models to leak the training data?

One might hope that traditional security approaches work to think about the security of ML systems,
and answer such questions. But this is not true. The paradigm of learning from data poses many challenges
compared to traditional software security. ML systems are stochastically trained on data coming from
an unknown data distribution. It is thus unclear what exactly is the intended vs. unintended behavior
(vulnerability) of the ML model or the training process. To make matters worse, the de-facto training process
has many knobs that affect the outcome, and due to its complexity evades purely theoretical analysis. Thus,
one of the key problems in analyzing machine learning systems is the lack of systematic tools and formal
definitions of its key security properties.

Definitions of Security [1]. Several lawsuits have been filed claiming copyright infringement recently
against ML models that could cost billions of dollars. To address both intellectual property concerns and
ensure non-repudiation properties of training data, we require proofs of model ownership and creation using a
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particular dataset beyond reasonable doubt. Such proofs are feasible if SGD executions can be recorded and
proven to be unforgeable, i.e., there exists a unique set of samples that correspond to a gradient training step.
We give the first provable procedure for checking collision-resistance in SGD execution traces [1]. The key
to this result are precise definitions of forgery in SGD execution traces. We experimentally find that traces
are unforgeable for all considered experimental setups. This is surprising because our results contradict
conjectures made in prior work [24, 22]. The contrast stems from definitions of exact vs. approximate
equal training step update. We show that if one replaces a training step with an approximately forged
one, the difference between the forged and original traces diverges with subsequent training. Because of
this, forgeries that result in approximately equal updates are detectable. We argue that forgery needs to be
precisely defined with algebraic properties, for which we give sound procedure.

Our result points to a bigger conceptual contribution: SGD training updates in an execution trace can
be checked to be collision-resistant. This opens up several interesting avenues of connecting cryptography
and SGD, e.g., can we show one-wayness of SGD updates? To make this more practical is my research goal,
and several challenges need to be addressed.

Abstractions for Reasoning about the Training Process [2]. What is the distinction and overlap
between (intended) generalization and (unintended) memorization? In ML, the intended behavior is to
generalize from training on a dataset, and not memorize properties of specific samples, revealing private
information about individuals’ data in the dataset. This question has been handled by many statistical
approaches but has resulted in more unexpected overlaps than clear-cut dichotomies between generalization
and memorization. We study this question through the lens of causality. Specifically, we consider member-
ship inference attacks [21] that test whether ML models have memorized training examples. While many
membership inference attacks have been proposed, it is difficult to understand why such tests are successful
in ML only from experiments. We show that claims about causes of memorization via membership infer-
ence attacks are refutable and can lead to paradoxes because of incomplete characterization of the learning
process [2]. Our work is the first to propose causal graphs to model the stochastic training and attack
procedures. The causal graphs allow encoding known mathematical facts along with data-induced facts. We
encode that the generalization error can be decomposed as bias and variance, and find that these components
individually influence memorization. In particular, we explain why even when the generalization error goes
down as the size of the model increases, memorization still increases up to a point: Because the variance
component plays a role by itself in the accuracy of membership inference. In addition to these new connec-
tions, we check 18 hypothesized causes stated in prior works for membership inference attacks via causal
reasoning on the graphs, refuting 7/18. We find that well-known membership inference tests have similar
causes as poor generalization. We have also shown that causality helps understand benchmark-dependent
performance of non-stochastic processes, for example common SAT solvers [3].

Sound Procedures for Statistical Verifiability [4, 5]. Having the right definitions and abstractions,
security properties of ML models can naturally be specified as properties over distributions. Prior work on
verification of these properties, however, is qualitative [19, 23]. It is concerned with the worst-case example
in the distribution. We propose quantitative ML verification frameworks that measure how often the
property is true on average with PAC-style [26] guarantees.

We have investigated both white-box and black-box models of access to the verifier. In the case of
white-box, we instantiated a sound procedure for binarized neural networks for which there exist encodings
to propositional logic. Our work shows that such encodings are sound in that counting the number of
satisfying assignments over a set of projected variables of the formulae returns the estimate of how often
the property is true. We show the utility of quantitative verification to adversarial robustness, fairness
and susceptibility to trojan attacks as well [4]. In the case of black-box access to models, we propose a
formulation that ascertains whether a property holds for less than a user-specified threshold or more than
a user-specified threshold [5] with PAC-style guarantees. We show that when our algorithm Provero
terminates, it returns with the desired confidence and error tolerance. Our empirical results demonstrate
that Provero can statistically verify robustness for large deep neural networks such as VGG16, VGG19,
ResNet50, DenseNet121 and InceptionV3. We find that such average-case adversarial robustness correlates
highly with specialized attacks [5]. This shows that quantitative estimates are a good predictor of true
robustness while not being attack-specific.

Our benchmarks have been used in SAT competitions since 2020, in the model counting track. Several
works have improved quantitative verification for ML, and extended our ideas for both white-box and black-
box approaches. We have released our code and benchmarks as open-source tools [12, 13].
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Thrust II. Learnability of Analysis Rules

Beyond my main research focus, I am excited about combining statistical and symbolic techniques to enable
generalizable symbolic systems. I have worked on several problems in this space.

Inferring Rules for Cross-Architecture Taint Analysis [10]. One of the difficulties in analyzing
security properties of binaries is that it requires knowledge of architecture-specific semantics. In particular,
taint analysis has been one of the cornerstones of binary analysis, but suffers from oversimplified, error-
prone hand-written taint rules, and even undefined specifications. As a result, taint analysis engines often
over-taint or under-taint. In our work [10], we learn taint rules with minimal architectural knowledge from
executions behavior on for 4 widely-used architectures (x86, ARM, MIPS, AArch64). The inferred rules
have superhuman accuracy, and can be used to reliably analyze vulnerabilities in binaries.

Inferring Rules for Cross-Language Code Translation [9]. In cross-language code translation we
face the issue of deterministic hand-written translation systems that do not offer user-customizability per
program. This customizability is important for many application-specific goals such as enhancing perfor-
mance, readability, maintainability, and so on. We propose a paradigm shift from these static rules to mostly
automatic and incremental, user-guided inference of translation rules for the given program [9]. We show
that such translators are feasible for translating Python to Javascript programs, on popular code interview-
ing benchmarks, and on additional benchmarks of more challenging and longer programs. Our approach,
DuoGlot, achieves 90% translation accuracy and so it outperforms all existing translators (both handcrafted
and neural-based), while it produces readable code.

Thrust III. Provable Defenses

Another dimension in my research is on provable defenses in ML security. I have worked on differentially
private algorithms for learning graphs [6, 7]. Learning structural information from graphs helps in achiev-
ing better accuracy in many applications such as social networks, computer vision and traffic prediction.
However, graph edges often encode sensitive information, e.g., social or financial transactions between peo-
ple represented as nodes in the graph. We show that we can achieve comparable or better accuracy to
non-private baselines, while still protecting the privacy of graph edges via guarantees of differential privacy.

Private Hierarchical Clustering [6]. In federated social networks, users do not have personalized rec-
ommendations or online advertising. These services require answering questions regarding the structural
properties of the social graph, such as “Which users are in the community of the target user?” but users
are reluctant to share their contacts with an untrusted service provider. To answer such queries in the
federated setup, we present the first work to learn hierarchical cluster trees using local differential privacy.
Our algorithms for computing them come with theoretical bounds on the quality of the trees learned. The
private trees are of comparable quality (with at most about 10% utility loss) to those obtained from the
non-private algorithms, while having reasonable privacy parameters. We show the utility of such queries by
redesigning two state-of-the-art social recommendation algorithms for the federated social network setup.
Our recommendation algorithms significantly outperform the baselines that do not use social contacts.

Link Private Graph Networks [7]. Graph convolutional networks are increasingly used for node classifi-
cation on graphs, wherein nodes with similar features have to be given the same label. Link-stealing attacks
that infer whether an edge is present in the training set of a graph convolutional network even when given
black-box access to the model are a concern for using these models on sensitive graph data. Our goal is
thus to preserve the privacy of edges. We propose a novel neural network architecture for training on graphs
called LPGNet. The key to this construction is to use coarser graph structural information called cluster
degree vectors, which can be made differentially private by adding noise. LPGNet stacks layers of multilayer
perceptrons trained on node features and differentially private cluster degree vectors. LPGNet models em-
pirically achieve better privacy-utility tradeoffs compared to the state-of-the-art existing approach, which is
a mechanism for retrofitting differential privacy into conventional graph convolutional network architecture.
LPGNet models have better link-stealing attack resilience than non-private graph convolutional networks
but also offer better utility than models that are not trained with graph data.

Future Research

With a combination of theory and systems, I aim pursue my vision of rigorous security analysis and built-in
security protections for ML systems. The two directions of research I have been working on have interesting
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synergies in automatically inferring or synthesizing analysis rules for systems, including ML systems. Below
are some more concrete themes of near-term research topics.

Building ML Systems with Security. There are currently practical limitations to certifying training
integrity via recording the execution traces of the training process. The training is distributed, which means
we need to ensure atomicity of the training logs, as well as improving the demands on storage, since currently
the procedure requires saving the model parameters at every training step. In order to build a system that is
deployable for these large models, we also require more scalable procedures to check the collision-resistance
property of training updates. I will seek academic and industrial collaborations to develop such a system in
the publishing model of Hugging Face, specifically in open-sourcing large language models for code.

Deepening Foundations for Security. There is some evidence that it is highly unlikely that a perfectly
robust model with high accuracy can be learned efficiently, stemming from both empirical and theoretical
work [17, 18, 16, 25]. Hence, finding robustness counterexamples might not be surprising at this point, though
humans seem to be robust classfiers with non-zero error rates that learn efficiently. More importantly, does
this imply that there is some intrinsic hardness in the learning process that could be useful for constructing
cryptographic primitives? To this end, I am exploring the cryptographic properties of SGD. Our existing
and on-going work suggests that there are geometric properties of the gradients that allow us to obtain
certain hardness results intrinsically in SGD, and enable cryptographic constructions from the process of
SGD. Concretely, I want to explore these results for more meaningful definitions of security properties for
ML systems, and whether it can lead to different ways of learning with guarantees for practical applications.

Extending Analysis for Defenses. Concerns of security do not exist in isolation in ML systems, and
most often, the root causes of security vulnerabilities in ML systems are connected. Effective defenses should
aim to eliminate the root causes rather than to fix one vulnerability at the potential cost of introducing
more in the ML systems. I would focus on the following three research objectives: (1) developing sound
procedures to estimate the effectiveness of defenses in the presence of entangled vulnerabilities, (2) proposing
new defense objectives informed by root cause analysis of the security vulnerabilities, and (3) automated
secure ML systems construction and rigorous testing. I have started investigating the first two objectives
in the context of the right-to-be-forgotten requests, i.e., individuals have the right to request their data to
be removed from a database or training dataset. Our ongoing work identifies gaps in existing memorization
metrics when used to evaluate defenses such as unlearning via gradient-based methods. We find that existing
security definitions of memorization are static, not adapted to batches of unlearning requests. This causes
disparate impact on other samples, damaging the utility of the ML models to other samples. We aim is to
provide a more robust definition for removing training samples, informed by this observation.

Publications
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